
Operations on Data

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Introduction

 We have discussed the fact that data inside a computer is stored as patterns of

bits

 Logic operations (邏輯運算) refer to those operations that apply the same basic operation

on individual bits of a pattern, or on two corresponding bits in two patterns

 We can define logic operations at the bit level (位元階層) and at the pattern level (樣式階
層)

2

Logic Operations - Logic operations at bit level

 A bit can take one of the two values: 0 or 1

 If we interpret 0 as the value false and 1 as the value true, we can apply the

operations defined in Boolean algebra (布林代數) to manipulate bits

 It belongs to a subfield of mathematics called logic

 We show briefly four bit-level operations that are used to manipulate bits:

NOT, AND, OR, and XOR

 A truth table (真值表) is used to define the values of output for each possible input.

Note that the output of each operator is always one bit, but the input can be one or

two bits

3

Logic operations at bit level

 NOT - a unary operator (一元運算子): it takes only one input

 The output bit is the complement of the input. If the input is 0, the output is 1, if the input

is 1, the output is 0

 AND - a binary operator (二元運算子): it takes two inputs

 The output bit is 1 if both inputs are 1s and the output is 0 in the other three cases

4

For x = 0 or 1 xAND 0 → 0 0 AND x→ 0

Logic operations at bit level

 OR - a binary operator

 The output bit is 0 if both inputs are 0s and the output is 1 in the other three cases It is

sometimes called the inclusive-or operator

 XOR - a binary operator

 Like the OR operator, with only one difference: the output is 0 if both inputs are 1s

5

For x = 0 or 1 x OR 1 → 1 1 OR x→ 1

For x = 0 or 1 1 XOR x → NOT x 1 XOR x→ NOT x

Logic operations at bit level

 The XOR operator is not actually a new operator. We can always simulate it

using the other three operators. The following two expressions are equivalent:

6

x XOR y↔ [xAND (NOT y)] OR [(NOT x) AND y]

Logic operations at pattern level

 The same four operators (NOT, AND, OR, and XOR) can be applied to an 𝑛-

bit pattern

 The effect is the same as applying each operator to each individual bit for NOT and to each

corresponding pair of bits for other three operators

7

Logic operations at pattern level

 Use the NOT operator on the bit pattern 10011000

 Use the AND operator on the bit patterns 10011000 and 00101010

8

Logic operations at pattern level

 Use the OR operator on the bit patterns 10011001 and 00101110

 Use the XOR operator on the bit patterns 10011001 and 00101110

9

Applications

 Complementing (取補數)

 An application of the NOT operator is to complement the whole pattern

 Applying this operator to a pattern changes every 0 to 1 and every 1 to 0, which is

sometimes referred to as a one’s complement (一的補數) operation

 Unsetting specific bits (清除特定位元)

 One of the applications of the AND operator is to unset (force to 0) bits in a bit pattern

 The second input, in this case, is called a mask (遮罩). The 0-bits in the mask unset the

corresponding bits in the first input, while 1-bits in the mask leave the corresponding bits

in the first input unchanged

10

Applications

 Setting specific bits (設定特定位元)

 One of the applications of the OR operator is to set (force to 1) bits in a bit pattern

 The 1-bits in the mask set the corresponding bits in the first input, and the 0-bits in the

mask leave the corresponding bits in the first input unchanged

 Flipping specific bits (反轉特定位元)

 One of the applications of the XOR operator is to flip (complement) bits in a bit pattern

 The 1-bits in the mask flip the corresponding bits in the first input, and the 0-bits in the

mask leave the corresponding bits in the first input unchanged

11

Applications

 Use a mask to unset (clear) or set the five leftmost bits of a pattern 10100110

 Use a mask to flip the five leftmost bits of a pattern 10100110

12

Shift Operations (移位運算)

 Shift operations move the bits in a pattern, changing the positions of the bits

 We can divide shift operations into two categories: logical shift (邏輯移位) operations and

arithmetic shift (算數移位) operations

 A logical shift operation is applied to a pattern that does not represent a signed

number

 The reason is that these shift operations may change the sign of the number that is defined

by the leftmost bit in the pattern

 Arithmetic shift operations assume that the bit pattern is a signed integer in

two’s complement format

13

Logical shift operations – Simple shift

 A simple right (left) shift operation shifts each bit one position to the right

 The rightmost (leftmost) bit is lost and a 0 fills the leftmost (rightmost) bit

 Use a logical left shift operation on the bit pattern 10011000

14

Logical shift operations – Circular shift (循環移位)

 A circular shift operation (or rotate operation) shifts bits, but no bit is lost or

added

 A circular right shift (left shift) shifts each bit one position to the right (left). The rightmost

(leftmost) bit is circulated and becomes the leftmost (rightmost) bit

 Use a circular left shift operation on the bit pattern 10011000

15

Applications

 Assume that we have a pattern and we need to use the third bit (from the right)

of this pattern in a decision-making process. We want to know if this particular

bit is 0 or 1

16

Arithmetic shift operations

 Arithmetic right shift is used to divide an integer by two, while arithmetic left

shift is used to multiply an integer by two

 These operations should not change the sign (leftmost) bit. An arithmetic right shift retains

the sign bit, but also copies it into the next right bit, so that the sign is preserved

 An arithmetic left shift discards the sign bit and accepts the bit to the left of the sign bit as

the sign

 If the new sign bit is the same as the previous one, the operation is successful, otherwise, an

overflow or underflow has occurred and the result is not valid

17

https://math.stackexchange.com/questions/3539112/why-does-shifting-right-on-a-twos-complement-binary-number-divide-it-by-2

Arithmetic shift operations

 Use an arithmetic right shift operation on the bit pattern 10011001

 Use an arithmetic left shift operation on the bit pattern 11011001

18

Arithmetic shift operations

 Use an arithmetic left shift operation on the bit pattern 01111111. Is the result

valid or not?

19

Arithmetic operations

 Arithmetic operations involve adding, subtracting, multiplying, and dividing.

We can apply these operations to integers and floating-point numbers

 All arithmetic operations can be applied to integers. We only discuss addition

and subtraction of integers here

20

Arithmetic operations - two’s complement integers

 We first discuss addition and subtraction for integers in two’s complement

representation

 One of the advantages of two’s complement representation is that there is no difference

between addition and subtraction

 When the subtraction operation is encountered, the computer simply changes it to an addition

operation, but makes two’s complement of the second number

21

𝐴 − 𝐵 ↔ 𝐴 + (ത𝐵 + 1)
Where (ത𝐵 + 1)means the two’s complement of 𝐵

Arithmetic operations - two’s complement integers

 We should remember that we add integers column by column

 In each column, we have either two bits to add if there is no carry from the previous

column, or three bits to add if there is a carry from the previous column

22

Arithmetic operations - two’s complement integers

1. If the operation is subtraction,

we take the two’s complement of

the second integer. Otherwise,

we move to the next step

2. We add the two integers

23

Arithmetic operations - two’s complement integers

 Two integers 𝐴 = (00011000)2 and 𝐵 = (11101111)2 are stored in two’s

complement format. Show how B is added to A and show how B is subtracted

from A

24

Arithmetic operations - two’s complement integers

 Two integers 𝐴 = (00010001)2 and 𝐵 = (00010110)2 are stored in two’s

complement format. Show how B is added to A

 Two integers 𝐴 = (11011101)2 and 𝐵 = (00010100)2 are stored in two’s

complement format. Show how B is subtracted from A

25

Arithmetic operations - two’s complement integers

 Two integers 𝐴 = (01111111)2 and 𝐵 = (00000011)2 are stored in two’s

complement format. Show how B is added to A. Is the result valid or not?

26

Arithmetic operations - sign-and-magnitude integers

 Addition and subtraction for integers in sign-and-magnitude representation look very

complex

 We have four different combinations of signs (two signs, each of two values) for addition, and four

different conditions for subtraction. This means that we need to consider eight different situations

 Check Appendix I for more details

27

Arithmetic operations - reals

 All arithmetic operations such as addition, subtraction, multiplication, and division

can be applied to reals stored in floating-point format

 Multiplication of two reals involves multiplication of two integers in sign-and-magnitude

representation. Division of two reals involves the division of two integers in sign-and-magnitude

representations

 Check Appendix J for more details

28

Appendix

29

Digital circuits

 A computer is normally built out of standard components that we collectively

refer to as digital circuits

 Logic gate (邏輯閘) is a device that computes a Boolean operation

 Often implemented as small electronic circuits called transistors

 Can be constructed from a variety of other technologies

 Provide the building blocks from which computers are constructed

 One important circuit is known as a flip-flop (正反器) or latch (閂鎖)

30

Digital circuits

 This act as a fundamental unit of computer

memory

 One input line is used to set its stored value to 1

 One input line is used to set its stored value to 0

 While both input lines are 0, the most recently

stored value is preserved

31

Digital circuits

 This demonstrates how devices can be constructed from logic gates, a process

known as digital circuit design, which is an important topic in engineering

 Check Appendix E for more details

 The concept of a flip-flop provides an example of abstraction and the use of

abstract tools

 A computer engineer does not need to know the internals of flip-flop. Instead, only an

understanding of the flip-flop’s external properties is needed to use it as an abstract tool

 The design of computer circuitry takes on a hierarchical structure, each level of which uses

the lower level components as abstract tools

 A technology known as very large-scale integration (VLSI) (超大型積體電路),

is used to create miniature devices containing millions of flip-flops, logic gates

along with their controlling circuitry

32

Arithmetic operations - sign-and-magnitude integers

33

Arithmetic operations - reals

34

